SPG-GMKL: Generalized Multiple Kernel Learning with a Million Kernels

نویسندگان

  • Ashesh Jain
  • S. V. N. Vishwanathan
  • Manik Varma
چکیده

Multiple Kernel Learning (MKL) aims to learn the kernel in an SVM from training data. Many MKL formulations have been proposed and some have proved effective in certain applications. Nevertheless, as MKL is a nascent field, many more formulations need to be developed to generalize across domains and meet the challenges of real world applications. However, each MKL formulation typically necessitates the development of a specialized optimization algorithm. The lack of an efficient, general purpose optimizer capable of handling a wide range of formulations presents a significant challenge to those looking to take MKL out of the lab and into the real world. This problem was somewhat alleviated by the development of the Generalized Multiple Kernel Learning (GMKL) formulation which admits fairly general kernel parameterizations and regularizers subject to mild constraints. However, the projected gradient descent GMKL optimizer is inefficient as the computation of the step size and a reasonably accurate objective function value or gradient direction are all expensive. We overcome these limitations by developing a Spectral Projected Gradient (SPG) descent optimizer which: a) takes into account second order information in selecting step sizes; b) employs a non-monotone step size selection criterion requiring fewer function evaluations; c) is robust to gradient noise, and d) can take quick steps when far away from the optimum. We show that our proposed SPG-GMKL optimizer can be an order of magnitude faster than projected gradient descent on even small and medium sized datasets. In some cases, SPG-GMKL can even outperform state-of-the-art specialized optimization algorithms developed for a single MKL formulation. Furthermore, we demonstrate that SPG-GMKL can scale well beyond gradient descent to large problems involving a million kernels or half a million data points. Our code and implementation are available publically. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. KDD’12, August 12–16, 2012, Beijing, China. Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$15.00.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multiple Kernel Learning Model Based on p-Norm

By utilizing kernel functions, support vector machines (SVMs) successfully solve the linearly inseparable problems. Subsequently, its applicable areas have been greatly extended. Using multiple kernels (MKs) to improve the SVM classification accuracy has been a hot topic in the SVM research society for several years. However, most MK learning (MKL) methods employ L1-norm constraint on the kerne...

متن کامل

A simple yet efficient algorithm for multiple kernel learning under elastic-net constraints

This report presents an algorithm for the solution of multiple kernel learning (MKL) problems with elastic-net constraints on the kernel weights. Please see Sun et al. (2013) and Yang et al. (2011) for a review on multiple kernel learning and its extensions. In particular Yang et al. (2011) introduced the generalized multiple kernel learning (GMKL) model where the kernel weights are subject to ...

متن کامل

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

Averaging of kernel functions

In kernel-based machines, the integration of a number of different kernels to build more flexible learning methods is a promising avenue for research. In multiple kernel learning, a compound kernel is build by learning a kernel that is a positively weighted arithmetic mean of several sources. We show in this paper that the only feasible average for kernel learning is precisely the arithmetic av...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012